(+)-ISOSHINANOLONE AND 2-METHYLBENZOFURAN-4-CARBALDEHYDE FROM THE FISH-STUNNING PLANT *HABROPETALUM DAWEI*

STEVEN W. HANSON*, MALCOLM CRAWFORD† and DEVAVARAM P. J. THANASINGH†

*Department of Science and Food Technology, Grimsby College of Technology, Nuns Corner, Grimsby, DN345BQ, U.K.;

†Department of Chemistry, Fourah Bay College, University of Sierra Leone, Freetown, Sierra Leone

(Received 22 August 1980)

Key Word Index—*Habropetalum dawei*; Dioncophyllaceae; (+)-isoshinanolone; (+)-cis-1,5-dihydroxy-2-methyl-4-oxo-1,2,3,4-tetrahydronaphthalene; 2-methylbenzofuran-4-carbaldehyde.

Abstract—(+)-Isoshinanolone was isolated from an aqueous extract of the leaves of *Habropetalum dawei*. After isolation of (+)-isoshinanolone, the aqueous extract of the leaves was acidified, refluxed and distilled to give a new benzofuran, 2-methylbenzofuran-4-carbaldehyde. (+)-Isoshinanolone was found to have fish-stunning activity.

INTRODUCTION

Habropetalum dawei (Hutch. & Dalz.) Airy Shaw belongs to an unusual family, the Dioncophyllaceae. This family consists of three monospecific genera: Dioncophyllum thollonii, which is found in Gabon and the Congo Republic; Triphyophyllum peltatum, which is found in many areas in Sierra Leone, Liberia and the Ivory Coast; and H. dawei, which is found only along a sandy coastal strip that extends for 40–50 miles from Sierra Leone into Liberia. H. dawei is used in Sierra Leone to catch fish. The leaves are pounded and thrown into lakes or slow-running streams. Within a few minutes the fish are stunned and float to the surface to be collected by the fishermen.

In previous investigations, plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) was isolated from the root bark of *D. thollonii* [1] and plumbagin and naphthalene tetrahydroisoquinoline alkaloids were isolated from *T. peltatum* [2]. The present study was carried out in order to isolate and identify the organic compounds present in an aqueous extract of the leaves of *H. dawei* and to determine their fish-stunning activity.

RESULTS AND DISCUSSION

An oil was isolated from an aqueous extract of the leaves of H. dawei by ether extraction and purified by fractional distillation (bp 130° at 0.8 mm Hg, $[\alpha]_D^{18} + 33^\circ$). Only one compound could be detected in this fraction by TLC and by NMR spectroscopy. The IR spectrum of this compound indicated the presence of OH (3400 cm⁻¹) and of strongly H-bonded C=O (1640 cm⁻¹); C and H, and MS analysis gave a molecular formula of $C_{11}H_{12}O_3$. The compound showed an intense green fluorescence under UV light and its UV spectra in EtOH and M NaOH were similar to those of 2-hydroxyacetophenone. Structure 1 was deduced from the ¹H NMR and ¹³C NMR spectra. Of importance in the ¹H NMR spectrum is the 2 Hz coupling constant of CHOH $(\delta 4.65)$ which is consistent with the OH being 'axial' and cis to an 'equatorial' Me. The structure was confirmed by chromic acid oxidation, which gave a yellow crystalline

solid (mp 89–91°, $[\alpha]_0^{18}$ – 115°), which when dissolved in base and further oxidized with chromic acid gave plumbagin. C and H, and MS analysis of the yellow crystalline solid gave a molecular formula of $C_{11}H_{10}O_3$ and the IR, UV and ¹H NMR spectra were all consistent with its being (-)-5-hydroxy-2-methyl-2,3-dihydro-1,4-naphthoquinone (lit. [3] racemic modification, mp 87°).

Structure 1 has been reported for (-)-isoshinanolone isolated from Diospyros maritima (Ebenaceae) [4] and the absolute configuration 1a was tentatively assigned. The MS, ¹H NMR, IR and UV spectra of the compound from H. dawei are in good agreement with those of (-)-isoshinanolone, however, (-)-isoshinanolone was obtained as a crystalline solid (decomp. 160° , sublime 230°, melt completely 255°) with $[\alpha]_{\rm D}^{18}$ -7° . It is not clear how these differences arise, but on the basis of the spectral and optical rotation data, it appears that the compound from H. dawei is (+)-isoshinanolone, with the corresponding absolute configuration 1b.

In order to hydrolyse any glycosides that might be present, the aqueous extract remaining after ether extraction was acidified with hydrochloric acid, refluxed for 6 hr and distilled. Ether extraction of the distillate and fractional distillation of the ether residue gave a pale yellow oil (bp 80° at 0.8 mm Hg). Only one compound could be

Short Reports 1163

detected by TLC and by ^1H NMR and ^{13}C NMR spectroscopy; C and H, and MS analysis gave a molecular formula of $\text{C}_{10}\text{H}_8\text{O}_2$. An aldehyde group was indicated by the IR spectrum (1690 cm $^{-1}$) and by the ^1H NMR spectrum (δ 10.10) and this was confirmed by KMnO₄ oxidation which gave a carboxylic acid, $\text{C}_{10}\text{H}_8\text{O}_3$. Wolff-Kishner reduction gave 2,4-dimethylbenzofuran (2) [5]. Since the physical and spectral properties of the oil and of its carboxylic acid derivative differ from those of known samples of 4-methylbenzofuran-2-carbaldehyde and 4-methylbenzofuran-2-carboxylic acid [5], it follows that the oil is a new benzofuran, 2-methylbenzofuran-4-carbaldehyde (3).

(+)-Isoshinanolone was found to have fish-stunning activity when tested by standard procedures [6] using Barbus liberiensis as the test fish. In a typical experiment, it was found that (+)-isoshinanolone at a concentration of 25 ppm stunned the test fish in a few minutes and killed them in 45 min. 2-Methylbenzofuran-4-carbaldehyde was found to have bactericidal and fungicidal activity [7].

EXPERIMENTAL

Plant material. H. dawei was collected from the sandy coastal region in the Pujehun District of Sierra Leone; voucher specimens are kept in the Herbarium of the Department of Botany, Fourah Bay College, University of Sierra Leone, Freetown.

Isolation of (+)-isoshinanolone. Chopped, dried leaves (865 g) were extracted at room temp. with H₂O for 2 days and after filtration the extract was extracted with Et2O. The Et2O extract was extracted with 5 % NaOH and this after acidification with dil HCl was extracted with Et₂O. Evapn of the Et₂O extract, followed by fractional distillation, gave an oil, (+)-isoshinanolone (4 g), bp 130° at 0.8 mm Hg, $[\alpha]_D^{18} + 33^\circ$ (CHCl₃; c 0.97) (Found: C, 68.7; H, 6.5. $C_{11}H_{12}O_3$ requires: C, 68.7; H, 6.3%); v_{max}^{film} cm⁻¹: 3400, 2930, 1640, 1453, 1345, 1245, 1163, 978, 813, 797, 742; λ_{max}^{EtOH} nm $(\log \varepsilon)$: 259 (3.95), 332 (3.56); $\lambda_{\max}^{M \text{ NaOH}}$ nm $(\log \varepsilon)$: 260 (3.86), 366 (3.78); ¹H NMR $(100 \text{ MHz}, \text{CDCl}_3)$: δ 12.3 (1 H, s), 7.42 (1 H, dd,C-7), 6.87 (2 H, d, C-6 and C-8), 4.65 (1 H, d, J = 2 Hz, C-1), 2.88 (1 H, dd, J = 11 and 17.5 Hz, C-3 cis to Me), 2.2-2.6 (2 H, m), 1.14(3 H, d, J = 7 Hz, Me); ¹³C NMR (15 MHz, CDCl₃): δ (TMS) 205.1 (s, C-4), 162.4 (s, C-5), 145.1 (s, C-8a), 136.9 (d, C-7), 118.9 (d, C-6 or C-8), 117.8 (d, C-6 or C-8), 114.8 (s, C-4a), 70.9 (d, C-1), 40.6 (t, C-3), 34.4 (d, C-2), 16.2 (q, Me); MS (probe) m/z (rel. int.): $192.0789 (M^+, 100. C_{11}H_{12}O_3 \text{ requires } 192.0786), 177 (M^+ - Me,$ 24; m* 163.1), 174 (M⁺ -H₂O, 18; m* 157.8), 163 (18), 150 $(M^+ - 42, 66; m^* 117.1), 149 (30), 131 (24), 122 (60), 121 (90).$

Oxidation of (+)-isoshinanolone. To a soln of (+)isoshinanolone (400 mg) in Me₂CO (20 ml) at 0° was added dropwise a CrO₃-H₂SO₄ soln (8 g CrO₃, 7 ml conc H₂SO₄, 12 ml H₂O) until a permanent brown colour was obtained. After 2 min the reaction mixture was poured into ice and H₂O (100 ml) and this was extracted with Et₂O. The extract on evapn gave yellow needles of (-)-5-hydroxy-2-methyl-2,3-dihydro-1,4-naphthoquinone (310 mg), mp 89-91° (from pentane), $[\alpha]_D^{18}$ -115° (CHCl₃; c 0.53) (Found: C, 69.5; H, 5.4. Calc. for C₁₁H₁₀O₃: C, 69.5; H, 5.3 %); $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 1695 (C=O), 1640 (H-bonded C=O); $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 229 (4.37), 261 (3.70), 345 (3.70); ${}^{1}\text{H NMR}$ $(100 \text{ MHz}, \text{CDCl}_3)$: δ 12.1 (1 H, s, OH), 7.68 (1 H, t, J = 7.5 Hz, C-7), 7.55 (1 H, dd, J = 2 and 7.5 Hz, C-6 or C-8), 7.25 (1 H, dd, J = 2and 7.5 Hz, C-6 or C-8), 3.35-3.03 (2 H, m, C-2 and C-3 trans to Me), 2.83 (1 H, dd, J = 12 and 17 Hz, C-3 cis to Me), 1.14 (3 H, d, J= 6.2 Hz, Me; MS (probe) m/z (rel. int.): 190 (M⁺, 79), 175 (M⁺ - Me, 100), 162 (M⁺ - CO, 19), 147 (26), 120 (48), 92 (41). 20 mg was dissolved in M NaOH and an excess of the $CrO_3-H_2SO_4$ soln was added. After 2 min the reaction mixture was poured into ice and H_2O and this was extracted with $CHCl_3$. The extract on evapn gave orange needles (12 mg) that were identical (IR, UV, 1H NMR, MS, mp, mmp) with a sample of plumbagin.

Isolation of 2-methylbenzofuran-4-carbaldehyde (3). The aq. extract (from 865 g of chopped dried leaves), after extraction with Et₂O (see above), was acidified with HCl (4 M, 200 ml), refluxed for 6 hr and distilled. The distillate was extracted with Et2O and the Et₂O extract was washed with Na₂CO₃ (2 M). Evapn of the Et2O extract, followed by fractional distillation, gave a pale yellow oil, 2-methylbenzofuran-4-carbaldehyde (2.5 g), bp 80° at 0.8 mm Hg (Found: C, 74.3; H, 5.4. $C_{10}H_8O_2$ requires: C, 75.0; H, 5.0%); $v_{\text{max}}^{\text{film}}$ cm⁻¹: 2740 (aldehyde C-H), 1690 (aldehyde C=O), 1590, 1435, 1255, 780; $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 226 (4.24), 276 sh (3.85), 284 (3.92), 325 (3.73); 1 H NMR (100 MHz, CDCl₃): δ 10.10 (1 H, s, CHO), 7.61 (1 H, d, J = 7.5 Hz, C-5 or C-7), 7.58 (1 H, d, J = 7.5 Hz, C-5 or C-7), 7.30 (1 H, t, J = 7.5 Hz, C-6), 7.10 (1 H, s, C-3), 2.50 (3 H, s, Me); 13 C NMR (15 MHz, CDCl₃): δ (TMS) 192.5 (d, CHO), 159.7 (s, C-2 or C-7a), 155.5 (s, C-7a or C-2), 128.6 (s, C-4), 128.6 (s, C-3a), 128.5 (d, C-5 or C-6), 123.0 (d, C-6 or C-5), 116.5(d, C-7), 103.2(d, C-3), 14.2(q, Me); MS(probe)m/z(rel.int.): 160.0524 (M $^+$, 98. $C_{10}H_8O_2$ requires 160.0524), 159 (100), 131 (59), 103 (15), 77 (28), 51 (20).

Oxidation of 3. To 3 (200 mg) in H₂O and Me₂CO (1:1, 20 ml) was added KMnO₄ (400 mg) and the mixture was left 24 hr at 25° and filtered. The filtrate was made alkaline with NaOH soln (10%), washed with Et₂O and acidified with dil H₂SO₄ to precipitate colourless needles of 2-methylbenzofuran-4-carboxylic acid (4) (138 mg), mp 210–212° (from aq. MeOH) (lit. [5] 4-methylbenzofuran-2-carboxylic acid, mp 190°) (Found: C, 67.9; H, 4.6. C₁₀H₈O₃ requires: C, 68.2; H, 4.6%); $v_{\rm Naijol}^{\rm Maijol}$ cm⁻¹: 3200–2500, 1685; $\lambda_{\rm max}^{\rm EiOH}$ nm (log ε): 218 (4.39), 262 (3.98), 268 (3.98), 302 (3.74); ¹H NMR (100 MHz, Me₂CO-d₆): δ 7.92 (1 H, d, J = 7.5 Hz, C-5), 7.67 (1 H, d, J = 7.5 Hz, C-7), 7.32 (1 H, t, J = 7.5 Hz, C-6), 7.05 (1 H, s, C-3), 2.52 (3 H, s, Me); MS (probe) m/z (rel. int.): 176.0473 (M⁺, 100. C₁₀H₈O₃ requires 176.0473), 175 (23), 159 (32), 131 (94), 130 (32), 103 (17), 77 (50), 51 (58).

Wolff-Kishner reduction of 3. To 3 (0.74 g) in DIGOL (5 ml) was added KOH (0.66 g) and $N_2H_4 \cdot H_2O$ (0.5 ml) and the mixture was refluxed for 1 hr and then heated to 200° after removing the condenser. After refluxing for a further 3 hr, the mixture was cooled, acidified with HCl (2 M, 10 ml) and extracted with C_6H_6 . 2,4-Dimethylbenzofuran (2) was isolated (TLC, Si gel) from the C_6H_6 residue as an oil (0.4 g) (Found: C, 82.3; H, 6.7. Calc. for $C_{10}H_{10}O$: C, 82.2; H, 6.9%); ¹H NMR and ¹³C NMR spectra identical with those of a known sample of 2,4-dimethylbenzofuran [5].

Acknowledgements—We wish to thank Professor and Mrs T. L. Green (Bo Teacher Training College, Sierra Leone) for collecting samples of H. dawei (with financial support from the Percy Sladden Memorial Fund of the Linnean Society), Dr T. Crawshaw (University of York) for assistance with the NMR spectra, Dr O. C. Musgrave (University of Aberdeen) for a sample of plumbagin, Dr N. Platzer and Dr P. Demerseman for samples of benzofuran derivatives and Dr S. Natori for copies of the spectra of (-)-isoshinanolone.

REFERENCES

- 1. Bouquet, A. and Paris, R. (1967) Plantes Méd. Phytothér. 1, 214.
- 2. Bruneton, J., Bouquet, A., Fournet, A. and Cavé, A. (1976) Phytochemistry 15, 817.

1164 Short Reports

- 3. Thomson, R. H. (1951) J. Chem. Soc. 1237.
- Tezuka, M., Takahashi, C., Kuroyanagi, M., Satake, M., Yoshihira, K. and Natori, S. (1973) Phytochemistry 12, 175.
- Platzer, N., Basselier, J. and Demerseman, P. (1974) Bull. Soc. Chim. Fr. 905.
- Erichsen Jones, J. R. (1964) Fish and River Pollution. Butterworths, London.
- Devavaram, P. J. T. (1977) M.Sc. Thesis, University of Sierra Leone.

Phytochemistry, Vol. 20, No. 5, pp. 1164-1165, 1981. Printed in Great Britain.

0031-9422/81/051164-02 \$02.00/0 © 1981 Pergamon Press Ltd.

PHENYLBUTANOIDS FROM ZINGIBER CASSUMUNAR

PITTAYA TUNTIWACHWUTTIKUL,* ORASA PANCHAROEN,* THAWORN JAIPETCH* and VICHAI REUTRAKUL†

* Department of Medical Science, Ministry of Public Health, Bangkok, Thailand; † Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 4, Thailand

(Received 26 June 1980)

Key Word Index—Zingiber cassumunar; Zingiberaceae; structure elucidation and syntheses; 1-arylbut-1,3-dienes; 1-arylbut-1-enes; (E)-4-(3',4'-dimethoxy)but-3-en-1-yl palmitate; aryl aldehydes.

Abstract—Five novel phenylbutanoids have been isolated from the rhizomes of *Zingiber cassumunar*. 3,4-Dimethoxy-benzaldehyde and 2,4,5-trimethoxy-benzaldehyde are also reported from the same source.

INTRODUCTION

Recent work from our laboratories has led to the isolation, structure elucidation [1] and syntheses [2] of six novel aromatic compounds. We have further investigated the hexane extract of the rhizomes of the title plant and the details are now reported.

RESULTS AND DISCUSSION

The milled rhizomes of the Zingiber cassumunar were extracted exhaustively with hexane in a Soxhlet apparatus. The hexane-soluble fraction [1] was chromatographed on a column of silica gel using hexane-ether as eluant to give four major fractions I-IV. Fraction I was analysed by GC-MS to give two were assigned components which as 4-(3',4'dimethoxyphenyl)but-1,3-diene 1[1] and 4-(3',4'dimethoxyphenyl)but-3-ene 2. Fraction II was further separated by prep. TLC to give a pale yellow oil and a colourless solid. GC-MS analysis of the oil led to the identification of 4-(2',4',5'-trimethoxyphenyl)but-1,3diene 3 [2] and 4-(2',4',5'-trimethoxyphenyl)but-3-ene 4. The colourless solid has been identified as (E)-4-(3',4'dimethoxyphenyl)but-3-en-1-yl palmitate 5. Purification of fraction III and IV by prep. TLC yielded 3,4dimethoxybenzaldehyde 6 and 2,4,5-trimethoxybenzaldehyde 7, respectively.

The identities of compounds 1-5 were further confirmed by comparing their spectral data with those of the synthetic materials [1,2] (for details, see Experimental). Compounds 6 and 7 were identical with the authentic samples.

The five phenylbutanoids have not been reported before from plant sources. The two benzaldehydes 6 and 7 are known substances, but have not been reported before from this species of Zingiber.

EXPERIMENTAL

 1 H NMR (60 MHz) spectra were recorded in CDCl₃ with TMS as an internal standard. Analytical GC was carried out with a stainless steel column (2 m × 3 mm) packed with silicone OV-17 on chromosorb under two different conditions: temp. programmed 120–200°, 5°/min (condition A) and temp. programmed 150–200° at 5° min (condition B). N_{2} flow rate at 50 ml/min and FID were employed for both conditions.

Extraction of the milled rhizomes of Z. cassumunar and separation of the concd extract into hexane-soluble and less-soluble fractions have been described previously [1]. The hexane-soluble fraction (30.0 g) was chromatographed on a column of silica gel (1.3 kg) using hexane-Et₂O as the eluting solvent to give four major fractions (I-IV, 5.8, 2.4, 1.0 and 8.5 g respectively, all fractions appearing as yellow viscous oil).